خانواده ای از خم های بیضوی

thesis
abstract

چکیده ندارد.

First 15 pages

Signup for downloading 15 first pages

Already have an account?login

similar resources

آشنایی با رمزنگاری خم های بیضوی

بخش بزرگی از رمزنگاری در سال های اخیر به رمزنگاری خم های بیضوی اختصاص یافته است. خم های بیضوی دسته ای از خم های جبری با ساختار گروه هستند. رمزنگاری خم های بیضوی یک روش رمزنگاری کلید عمومی مبتنی بر نظریۀ خم های بیضوی است که با استفاده از ویژگی های خم های بیضوی به جای روش های قبلی مانند تجزیه به حاصل ضرب اعداد اول، امنیت بالاتری را با طول کلید کوتاهتر فراهم می کند. این بخش از رمزنگاری در توافق و ...

full text

مسأله رتبه خانواده های جدیدی از خم های بیضوی و بررسی حدس bsd بر روی این خم ها

یکی از اساسی ترین سوالات در رابطه با خم های بیضوی، چگونگی ساختار گروهی آن روی میدان ‎$q$‎ است. بنا به قضیه مردل-ویل ‎، گروه نقاط یک خم بیضوی روی یک میدان اعداد‎ ‎ ، متناهی-مولد‎ ‎ است. میزور،‎ ‎$15$‎ گروه متناهی ارائه کرد و نشان داد بازای هر خم بیضوی دلخواه روی ‎$q$‎، زیر گروه تاب‎ فقط با یکی از این ‎$15$‎ حالت یکریخت است. در حالی که محاسبه زیر گروه تاب هر خم بیضوی کار چندان دشواری نیست، به د...

رتبه ی خم های بیضوی و بررسی استقلال نقاط یک خانواده از آن ها

یک گروه آبلی متناهی مولد است. ،e گویای خم بیضوی -k ی موردل-ویل، مجموعه نقاط ?? بنابر قضیه یعنی e (k) ? e (k)tor ? zr. شود. در حالت کلی یافتن ?? گفته می e ی جبری خم ?? یک عدد صحیح نامنفی است و رتبه r ، که در آن های ?? ی خم ?? در زمینه ?? ی آن یکی از موضوعات مهم ?? ای نیست و مطالعه ?? ی یک خم بیضوی کار ساده ?? رتبه کنیم . ?? ی یک خم بیضوی بیان می ?? هایی در مورد رتبه ?? نامه، قضایا و حدس ??...

خانواده هایی از خم های بیضوی روی میدان های عددی با گروه تابی معین.

میزور زیر گروه تابی خم های بیضوی تعریف شده روی q را مشخص کرد.همچنین او به همراه کمینی توانست زیرگروه تابی خم های بیضوی روی میدان های مربعی را نیز تعین کند.در ادامه کار آنها جون،لی و کیم نیز به صورت مشترک در مقاله ای، خانواده ای از خم های بیضوی روی میدان های عددی مربعی با زیرگروه تابی معین که حاصل کار میزور و کمینی است مورد مطالعه قرار دادند.همچنین جون، کیم و اسکویزر زیرگروه تابی خم های بیضوی رو...

ساختن خانواده هایی از خم های بیضوی با رتبه عمومی بالا

برای ساختن خانواده هایی از خم های بیضوی با رتبه عمومی بالا، از معادلات دیوفانتی خاص، برخی مفاهیم جبری و هندسی استفاده کرده، و وجود موارد زیر را نشان می دهیم: (i) نامتناهی خم بیضوی روی u^6+v^6+p^6+q^6=2(r^6+s^6) از رتبه حداقل پنج، با زیرگروه تاب بدیهی، که توسط یک خم بیضوی از رتبه حداقل سه روی q(p,q,r,s)‎ پارامتری می شود؛ (ii) خم های موردل e_k:y^2=x^3+k با گروه های تاب غیربدیهی از رتبه عمو...

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه ارومیه - دانشکده علوم

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023